Mesoporous Transition Metal Oxides for Supercapacitors

نویسندگان

  • Yan Wang
  • Jin Guo
  • Tingfeng Wang
  • Junfeng Shao
  • Dong Wang
  • Ying-Wei Yang
چکیده

Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol-spray diverse mesoporous metal oxides from metal nitrates

Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, m...

متن کامل

General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis

Nanowires and nanotubes have been the focus of considerable efforts in energy storage and solar energy conversion because of their unique properties. However, owing to the limitations of synthetic methods, most inorganic nanotubes, especially for multi-element oxides and binary-metal oxides, have been rarely fabricated. Here we design a gradient electrospinning and controlled pyrolysis method t...

متن کامل

Ordered Mesoporous Nanomaterials

The Special Issue of Nanomaterials "Ordered Mesoporous Nanomaterials" covers novel synthetic aspects of mesoporous materials and explores their use in diverse areas like drug delivery, photocatalysis, filtration or electrocatalysis. The range of materials tackled includes metals and alloys, aluminosilicates, silica, alumina and transition metal oxides. The variety of materials, synthetic approa...

متن کامل

Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides

Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium-niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite h...

متن کامل

Synthesis of Mesoporous Metal Oxides by Structure Replication: Thermal Analysis of Metal Nitrates in Porous Carbon Matrices

A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the therm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015